Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 5186, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518927

RESUMO

Roaming mechanisms, involving the brief generation of a neutral atom or molecule that stays in the vicinity before reacting with the remaining atoms of the precursor, are providing valuable insights into previously unexplained chemical reactions. Here, the mechanistic details and femtosecond time-resolved dynamics of H3+ formation from a series of alcohols with varying primary carbon chain lengths are obtained through a combination of strong-field laser excitation studies and ab initio molecular dynamics calculations. For small alcohols, four distinct pathways involving hydrogen migration and H2 roaming prior to H3+ formation are uncovered. Despite the increased number of hydrogens and possible combinations leading to H3+ formation, the yield decreases as the carbon chain length increases. The fundamental mechanistic findings presented here explore the formation of H3+, the most important ion in interstellar chemistry, through H2 roaming occurring in ionic species.

2.
Angew Chem Int Ed Engl ; 57(45): 14742-14746, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30152115

RESUMO

Molecular reactivity can change dramatically with the absorption of a photon due to the difference of the electronic configurations between the excited and ground states. Here we report on the discovery of a modular system (Schiff base formed from an aldehyde and an amine) that upon photoexcitation yields a more basic imine capable of intermolecular proton transfer from protic solvents. Ultrafast dynamics of the excited state conjugated Schiff base reveals the pathway for proton transfer, culminating in a 14-unit increase in pKa to give the excited state pKa * >20 in ethanol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...